Could you provide some more informations on the features selection step ?
There are various functions available, how to choose the right one ?
For example, I have tried the function get_n_optimal_sc_ft as following:
Code: Select all
nscales = 10
nfeats = 10
eval_sc = 5
best_ft = get_n_optimal_sc_ft(trads, testds, nscales, nfeats, eval_sc, threshold=0.85)
Code: Select all
{'Feats': array(['PLANA_PC1@1.15', 'PLANA_PC1@0.8', 'PLANA_PC1@0.5', 'ZRANGE_PC1@5',
'PLANA_PC1@5', 'ZRANGE_PC1@2', 'PLANA_PC1@2'], dtype='<U14'), 'Scales': array([1.15, 0.8 , 0.5 , 5. , 5. , 2. , 2. ]),
'feat_imp': array([0.05502378, 0.01943835, 0.00219957, 0.38108057, 0.28447151,
0.15420824, 0.10357798]), 'Indices': array([11, 9, 1, 19, 21, 16, 18]),
'Freq': array([1., 1., 1., 2., 2.]), 'OA': 0.8752, 'Fscore': 0.8783815358354078,
'Confidence': 0.2, 'Recall': 0.8751999999999999, 'Precision': 0.916803186088362,
'Class_UA': array([0.99948665, 0.62044951, 0.96906419, 0.99501558, 1. ]),
'Class_PA': array([0.9735, 0.98 , 0.6265, 0.7985, 0.9975]),
'Class_Fscore': array([0.98632219, 0.75983718, 0.7610082 , 0.88599168, 0.99874844]),
'Class_confidence': array([0.2, 0.2, 0.2, 0.2, 0.2]), 'Class_recall': array([0.9735, 0.98 , 0.6265, 0.7985, 0.9975]),
'Class_precision': array([0.99948665, 0.62044951, 0.96906419, 0.99501558, 1. ]),
'Labels': array([ 1., 2., 5., 10., 11.], dtype=float32)}
Thanks